
Decoding the GenAI 
Revolution
Welcome to our exploration of how GenAI is transforming software 
development. We'll examine practical shifts and application impacts that 
directly affect our work as engineers.

by Martin Rojas



The GenAI Tsunami

Unprecedented 
Growth
75% enterprise adoption in 
2024, with constant 
innovation from major 
players.

Developer Impact
Shifting from 
experimentation to practical 
integration in our 
applications.

Productivity Potential
20-50% speed increase cited in development workflows.



The Opportunity & Challenge

Build Next-Gen Apps
Using available models and frameworks

Evolve Our Skillsets
Effective prompting and integration strategies

Understand Technical Shifts
And their impact on our applications



Architectural & Scaling 
Insights

Transformer Basics
Multi-Head Attention allows 
models to grasp complex 
relationships in data.

Sparse Attention
Enables longer context 
windows efficiently, making 
models like Claude 3.5 and 
Gemini 1.5 Pro feasible.

Scaling Laws
Balance is key. A moderately sized model trained on more data can 
outperform larger models.



Why Models Behave Differently

Alignment (RLHF)
Makes models helpful and safe

Instruction Tuning
Enables following commands out-of-box

Fine-Tuning
Specializes for your domain knowledge



Unlocking Reasoning 
Capabilities

Challenge
Models struggle with multi-step logic

Chain-of-Thought
Guide models to outline steps

Tool Use Frameworks
Allow models to call external tools

Better Results
Improved accuracy on complex tasks



Chain-of-Thought Deep Dive
What is CoT?

A prompting strategy that makes LLMs show their work by 
outputting intermediate reasoning steps.

Benefits

Better accuracy on complex tasks

More transparency in reasoning

Handles multi-step problems

How to Use CoT

Zero-Shot: Add "Let's think step by step."

Few-Shot: Provide examples of step-by-step format

Limitations

Higher cost and latency

Hallucinations still possible

Works best with capable models



AI Agents & Workflow Automation

Plan
Break down goals into steps

Remember
Store context via vector DBs

Use Tools
Interact with APIs and databases

Act
Execute tasks autonomously



Frameworks for Building Agents

LangChain
Popular, modular framework in 
Python/TS. Provides building blocks to 
connect LLMs, memory, and tools.

Semantic Kernel
Microsoft's framework integrating LLMs 
with conventional code. Focuses on 
orchestrating plugins.

Cloud Platforms
AWS Bedrock, Azure AI, and Google 
Vertex AI offer managed agent-
building services.



Open Standards: MCP & A2A
The Problem

Connecting every AI model/agent to every tool/API leads to 
integration chaos (M×N problem).

MCP (Model Context Protocol)

"USB-C for AI" - Standard way for applications to talk to any 
tool or data source.

A2A (Agent-to-Agent Protocol)

Enables different AI agents to discover each other and 
collaborate on tasks.



Extended Context 
Windows

Massive Input 
Capacity
Models like Gemini 1.5 Pro 
and Claude 3.5 can process 
1M+ tokens.

Developer Use Cases
Analyze entire codebases, 
summarize long reports, 
maintain chat history.

Trade-offs
Higher cost, increased latency, and potential "lost in the middle" 
issues.



Multimodal Models

Models like GPT-4o, Claude 3.5, and Gemini can now understand images, audio, and sometimes video, enabling richer, more 
intuitive applications.



Designing Explainable 
Agent UIs

Show Reasoning
Display the agent's thought process and plan to build user trust.

Indicate Tool Usage
Make it clear when external tools or APIs are being used.

Provide Controls
Allow users to approve or reject actions before execution.



Managing AI Applications

Performance
Implement model 
routing, response 
streaming, and 
caching to manage 
latency.

Guardrails
Add input/output 
filtering, security 
checks, and rate 
limiting for safety.

Testing
Develop evaluation 
suites with test 
prompts and 
validation logic.

Monitoring
Track costs, quality 
metrics, and watch 
for bias or drift in 
production.



Key Takeaways

1
GenAI as a Platform

Build by composing available models, prompts, agents, and tools.

2
Responsible Integration

Prioritize reliability, security, ethics, and user trust.

3
Experiment & Evaluate

Test different models and techniques for your specific use case.

4
Leverage the Ecosystem

Utilize frameworks, standards, and community knowledge.



Atlanta Cloud Conference Sponsors


